Transformation of yeast with synthetic oligonucleotides.

نویسندگان

  • R P Moerschell
  • S Tsunasawa
  • F Sherman
چکیده

Genomic DNA of the yeast, Saccharomyces cerevisiae, can be conveniently and specifically altered by transforming spheroplasts or lithium acetate-treated cells directly with synthetic oligonucleotides. Altered forms of iso-1-cytochrome c were generated by transforming a cyc1 mutant with oligonucleotides and selecting for at least partially functional revertants; the oligonucleotides contained a sequence that corrected the cyc1 mutation and produced additional alterations at nearby sites. Transformation has been accomplished with oligonucleotides as short as 20 nucleotides and with amounts as low as 100 micrograms. This method of site-directed mutagenesis in vivo has been used to produce alterations in the NH2-terminal region of iso-1-cytochrome c in which the NH2-terminal methionine is excised and the penultimate residue is acetylated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strand-specificity in the transformation of yeast with synthetic oligonucleotides.

Cyc1 mutants of the yeast Saccharomyces cerevisiae were directly transformed with both sense and antisense oligonucleotides to examine the involvement of the two genomic DNA strands in transformation. Sense oligonucleotides yielded approximately 20-fold more transformants than antisense oligonucleotides. This differential effect was observed with oligonucleotides designed to make alterations at...

متن کامل

Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides

Here it is demonstrated that the yeast Saccharomyces cerevisiae can take up and assemble at least 38 overlapping single-stranded oligonucleotides and a linear double-stranded vector in one transformation event. These oligonucleotides can overlap by as few as 20 bp, and can be as long as 200 nucleotides in length. This straightforward scheme for assembling chemically-synthesized oligonucleotides...

متن کامل

PGASO: A synthetic biology tool for engineering a cellulolytic yeast

BACKGROUND To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. RESULTS A technique, named Promoter-based Gene Assembly and Simultaneous Overexpres...

متن کامل

Highly efficient oligonucleotide transfer into intact yeast cells using square-wave pulse electroporation.

Here, we present a rapid and reproducible procedure based on square-wave pulse electroporation that allows efficient penetration of synthetic oligonucleotides into intact yeast cells. This procedure was successfully used to modify the yeast genome with small amounts of oligonucleotide.

متن کامل

Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method.

In this chapter we have provided instructions for transforming yeast by a number of variations of the LiAc/SS-DNA/PEG method for a number of different applications. The rapid transformation protocol is used when small numbers of transformants are required. The high efficiency transformation protocol is used to generate large numbers of transformants or to deliver DNA constructs or oligonucleoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 1988